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Diffraction tomography is a promising, quantitative, and nondestructive three-dimensional (3D) imaging method
that enables us to obtain the complex refractive index distribution of a sample. The acquisition of the scattered
fields under the different illumination angles is a key issue, where the complex scattered fields need to be retrieved.
Presently, in order to develop terahertz (THz) diffraction tomography, the advanced acquisition of the scattered
fields is desired. In this paper, a THz in-line digital holographic diffraction tomography (THz-IDHDT) is pro-
posed with an extremely compact optical configuration and implemented for the first time, to the best of our
knowledge. A learning-based phase retrieval algorithm by combining the physical model and the convolution
neural networks, named the physics-enhanced deep neural network (PhysenNet), is applied to reconstruct
the THz in-line digital hologram, and obtain the complex amplitude distribution of the sample with high fidelity.
The advantages of the PhysenNet are that there is no need for pretraining by using a large set of labeled data, and
it can also work for thick samples. Experimentally with a continuous-wave THz laser, the PhysenNet is first
demonstrated by using the thin samples and exhibits superiority in terms of imaging quality. More importantly,
with regard to the thick samples, PhysenNet still works well, and can offer 2D complex scattered fields for dif-
fraction tomography. Furthermore, the 3D refractive index maps of two types of foam sphere samples are suc-
cessfully reconstructed by the proposed method. For a single foam sphere, the relative error of the average
refractive index value is only 0.17%, compared to the commercial THz time-domain spectroscopy system.
This demonstrates the feasibility and high accuracy of the THz-IDHDT, and the idea can be applied to other
wavebands as well. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.493902

1. INTRODUCTION

Terahertz (THz) waves, ranging from 0.1 to 10 THz, are lo-
cated between infrared and microwave in electromagnetic
waves. They have various special properties, such as high pen-
etration through nonmetallic and nonpolar materials, low pho-
ton energy, and fingerprint spectrum of biological and medical
materials. Therefore, THz waves are widely used in biomedical
fields [1], nondestructive testing [2], and three-dimensional
(3D) imaging [3,4], e.g., complementary medical diagnosis of
melanoma and brain gliomas [5], nondestructive defect testing

of aircraft composite materials from mechanical or heat damage
[6], and pigment identification in cultural relic restoration [7].

Remarkably, with the development of the elements manu-
factured by using the new technologies, such as additive manu-
facturing and photolithography, the requirements for detecting
the internal 3D structure and the defects are increasing [8].
Tomography is an effective method for 3D imaging, among
which computed tomography and diffraction tomography
are the most commonly known. Computed tomography based
on the geometrical straight-line model for the propagation of
radiation is suitable for shorter wavelengths, such as X-ray and
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electron beam. Although THz computed tomography has also
been well developed, the reconstructed results could suffer from
severe blurring and distortion, for a sample with high refractive
index contrast, complex structure, or large optical path differ-
ence, because of the large wavelength of THz waves [3]. The
diffraction tomography that takes the diffraction and scattering
into account is available for a wider range of wavelengths, and
also for THz waves. In THz diffraction tomography, it is es-
sential that the complex field of the projection data is acquired
accurately and efficiently; the developed methods include the
THz time-domain spectroscopy (THz-TDS) system [9] and
THz off-axis digital holography [10]. The THz-TDS system
provides the electric field of the hyperspectral information
by optical delay line [11]. Due to the requirements of scanning,
it is hard to obtain the amplitude and phase distribution of the
sample in a fast and full-field way, and the resolution is also
restricted by the size of the scanning beam. Although the
electro-optic sampling is a full-field imaging method based
on the THz-TDS system that accelerates the detection of two-
dimensional (2D) THz electric field, it is limited by the modu-
lation efficiency of the electro-optic crystal [9]. THz off-axis
digital holography is another quantitative phase-contrast imag-
ing (QPI) technology [12], but its additional reference beam
increases the complexity of the optical systems and reduces
the utilization of spatial bandwidth.

Due to the more compact optical configuration, THz in-line
digital holography [13] is a more promising method for acquir-
ing projection data. However, the twin-image problem and the
limitation of sample size obstruct its application. Fortunately,
the phase-shifting and the numerical iterative approaches have
been developed for eliminating the twin image. Being different
from the complicated optical configuration of the phase-shift-
ing method, the numerical iterative approaches do not require
additional hardware devices, and they can eliminate or suppress
the twin image through the known physical constraints. The
traditional numerical approach is applying the finite-support
constraint at the object plane or a sequence of intensity pattern
constraints at different recording planes. Recently, compressive
sensing [14], sparse optimization [15,16], iterative denoising
phase retrieval (IDPR) [17], and multiplane phase retrieval
[18] methods have been developed to overcome the twin-image
problem. In addition to the twin-image problem, the resolution
is also significant for the THz in-line digital holography. To
enhance or improve the resolution, the synthetic aperture
[16] and extrapolation [19] methods have also been explored.
Although the transport-of-intensity equation is also an in-line
configuration [20,21], two intensity images (in focus and de-
focus) need to be recorded at least.

In the visible light, deep learning (DL) exhibits huge poten-
tial in various areas of computational imaging, such as compu-
tational ghost imaging, digital holography, imaging through
scattering media [22], and diffraction tomography [23]. The
phase retrieval methods based on the convolution neural net-
works (CNNs) are also proposed to solve the twin-image prob-
lem. Benefiting from the excellent fitting power of the CNNs,
it enables further improvement of the reconstruction quality
[24]. According to the training process, the CNNs-based
phase retrieval methods are categorized in two ways: one is

an end-to-end neural network, which requires a large amount
of labeled data to pretrain the CNNs [25,26], and the other is a
physics-enhanced deep neural network combining a physical
model with the CNNs, which requires only a small amount
of measurement data to train the CNNs [27,28], e.g., in single-
frame [27], two-frame [28], and dual-wavelength [29] in-line
digital holography. In the THz band, the combination of the
CNNs and THz imaging has also attracted increasing attention
from researchers in the past few years, and the existing studies
are mainly focused on improving the resolution of the THz
intensity imaging [30,31]. Although the complex CNNs-based
methods have also been presented to simultaneously improve
the resolution of the amplitude and phase images [32], they
are all end-to-end methods. More ominously, with the lack
of available devices, it is difficult to achieve an enormous
amount of labeled data for pretraining, and this is an important
factor that limits the combination of the CNNs and various
THz imaging methods. Actually, the CNNs-based methods are
needed evenmore in the THz band. First, both the THz sources
and detectors are currently in the early stages of development,
and their stability and signal-to-noise ratios are relatively low.
Thus, algorithms of THz imaging with better performance
and robustness are increasingly required, for which the
CNNs-based methods are a possible solution. Second, the pixel
numbers of detectors in the THz band are significantly less than
those in the visible light [33], so the CNNs-based methods pro-
vide a more efficient pretraining process as well.

In this paper, THz in-line digital holographic diffraction
tomography (THz-IDHDT) was first proposed for 3D imaging
of the sample. In order to obtain the complex distribution of
the projection data with high fidelity, a learning-based phase
retrieval algorithm was implemented to reconstruct the in-line
digital holograms by combining the physical model and the
CNNs (PhysenNet). The main advantage of the PhysenNet
is that there is no need for tens of thousands of labeled data
for pretraining, and it can automatically optimize the network
parameters. Besides, it can also work for thick samples, for
which the traditional phase retrieval methods usually will
not give the results with reasonable quality. To the best of
our knowledge, it is the first time that the PhysenNet is applied
in the THz in-line digital holography. An experimental setup
was built based on a continuous-wave THz source with a fre-
quency of 2.52 THz, where the Gabor in-line digital holograms
were recorded by a pyroelectric detector. In the experiments,
the feasibility of the PhysenNet was verified using both the thin
and thick samples, respectively. It is necessary to record at least
several dozens of holograms of the projection data in THz-
IDHDT, but, at this point, it is relatively time-consuming to
use the general one-to-one training process of the PhysenNet,
i.e., one hologram corresponds to one PhysenNet. To decrease
the reconstruction time of the PhysenNet, a joint training pro-
cess is proposed; i.e., all the recorded digital holograms are used
to train a PhysenNet. Subsequently, the 3D refractive index
distribution of both the single and two glued foam spheres
was also successfully reconstructed by the THz-IDHDT.
Compared with the average refractive index value measured
by the THz-TDS system, the relative error of the proposed
method is only 0.17% for a single foam sphere. Thus, it is
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confirmed that the proposed THz-IDHDT provides an accu-
rate quantification of the refractive index distribution of the
sample in 3D.

This paper is organized as follows. In Section 2, the prin-
ciples of THz in-line digital holographic diffraction tomogra-
phy are introduced, including the pipeline of the PhysenNet for
the phase retrieval and the 3D reconstruction of THz diffrac-
tion tomography. In Section 3, the 2D amplitude and the phase
distributions under a single projection angle reconstructed by
PhysenNet are presented, and then the 3D refractive index dis-
tribution is reconstructed by filtered backpropagation (FBPP)
algorithm using the retrieved scattering fields. Finally, summa-
ries are drawn in Section 4.

2. PRINCIPLES

A. Recording the Scattered Fields Based on THz
In-Line Digital Holography
The recording principle of the THz in-line digital holography is
shown in Fig. 1, which is Gabor type. First, we assume that a
plane wave from a coherent THz source with a wavelength of λ
is incident on a 3D object, and the transmitted wave field of the
object at a rotation angle of θm can be expressed as

U 0�x0, y0; θm� � 1� Δt�x0, y0; θm�, m � 1, 2,…,M ,

(1)

where �x0, y0� are the spatial coordinates at object plane, the
constant “1” in Eq. (1) represents the nondiffracted light of
the transmitted light, which is regarded as the reference beam,
and Δt�x0, y0; θm� in Eq. (1) is the diffracted light modulated
by the object, which is regarded as the object beam. When the
reference beam and the object beam propagate to the recording
plane, they interfere with each other, whose intensity distribu-
tion forms the hologram as

I�x, y; θm� � 1� jΔT j2 � ΔT � ΔT �, (2)

where ΔT and ΔT � represent the object beam and its conju-
gate term on the hologram plane, respectively. Then, by rotat-
ing the object, a series of in-line digital holograms were
recorded using the THz array detector at the different rotation
angles (range from 0° to 360°). Because the object beam and the
reference beam share the same optical path, the reconstruction
quality was seriously degraded by the twin image. In order to
remove the twin image, the PhysenNet is introduced.

B. PhysenNet for Reconstructing the Scattered
Fields
The reconstruction of the THz in-line digital holography by
using the PhysenNet is shown in Fig. 2(a); it consists of
two main components: a neural network model and a diffrac-
tion propagation model. By combining the two models, the
process of its phase retrieval can be roughly divided into three
steps. Step 1: the preprocessed normalized hologram is first fed
into the neural network, and the output of the neural network
is assumed to be the amplitude and phase distribution in the
object plane. Step 2: the predicted complex field is forward
propagated to the recording plane to obtain the estimated in-
tensity distribution of the hologram. Step 3: the loss is calcu-
lated between the estimated hologram and the experimentally
recorded hologram; then, the weights of the neural network are
updated according to the loss. Steps 1–3 are repeated for train-
ing the neural network. By multiple iterations, the complex
scattered field at a certain illumination angle can be recon-
structed with high fidelity.

In our algorithm, U-Net [34], a CNN is employed as the
neural network model, which has been widely applied in vari-
ous fields of computational imaging. The detailed schematic of
the U-Net is presented in Fig. 2(b); its architecture includes the
convolution layer, max pooling layer, transposed convolution
layer, concatenation, and skip connection. The U-Net is an
encoder–decoder architecture; the left side can be regarded
as the encoder, which is responsible for feature extraction of
the input data, and the right side can be regarded as the
decoder, which is responsible for recovering the image. In
the decoder, the skip connection is extremely important; it
can fuse the deep and shallow features as well as solving the
vanishing gradient problem.

First, the normalized in-line digital hologram is adopted as
the input of the U-Net, and the output of the U-Net is assumed
to be the complex amplitude distribution Ôz�0�x0, y0; θm� in
the object plane,

Ôz�0�x0, y0; θm� � f �I�x, y; θm�,w�, (3)

where f and w are the designed U-Net and the corresponding
weight, respectively.

Then, it is propagated to the recording plane by the angular
spectrum propagation (ASP) method [35], which can be
expressed as

Fig. 1. Recording schematic of THz in-line digital hologram at different rotation angles.
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Uz�d �x, y; θm� � F −1fFfÔz�0�x0, y0; θm�gHz�d �f x , f y�g,
(4)

where

Hz�d �f x , f y�

�
(
exp

h
jk0d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �λf x�2 − �λf y�2

q i
, f 2

x � f 2
y<

1
λ2

0, else
: (5)

F and F −1 represent the Fourier transform and inverse Fourier
transform, Hz�d �f x , f y� is the transfer function, �f x , f y� are
the coordinates of the spatial spectrum in the recording plane, λ
is the wavelength, k0 � 2π∕λ is the wave number, and d is the
distance from the object plane to the recording plane. And the
intensity distribution of the estimated hologram on the record-
ing plane can be written as

Î z�d �x, y; θm� � jUz�d �x, y; θm�j2: (6)

With the estimated hologram and the experimentally re-
corded hologram, the loss function of the PhysenNet can be
given as

L�x, y; θm� � arg min
w

kI�x, y; θm� − Î�x, y; θm�k22: (7)

From the above loss function, it is revealed that the pro-
posed method does not require the ideal amplitude and phase
distribution of the sample to be known. Instead, it is a combi-
nation of a physical model and CNNs that allows the CNNs to

indirectly capture the mapping relationship between the exper-
imentally recorded hologram and the complex amplitude dis-
tribution of the sample. When the weight parameters of the
CNNs are optimized, the amplitude Âz�0 and phase φ̂z�0

of the sample without the twin image can be denoted as

Âz�0�x0, y0; θm� � absfÔz�0�x0, y0; θm�g, (8)

φ̂z�0�x0, y0; θm� � anglefÔz�0�x0, y0; θm�g, (9)

where absf·g and anglef·g are the operators to calculate the am-
plitude and phase of complex numbers, respectively.

In this paper, our models were implemented and tested us-
ing the TensorFlow Framework in a high-performance laptop
with an NVIDIA RTX 3070 graphics card and an i9-CPU. The
Adam optimizer was adopted to optimize the weight parame-
ters [36], and the learning rate gradually decays as the training
proceeds. Moreover, to avoid the overfitting problem, a uni-
formly distributed noise between 0 and 0.02 was added to the
input hologram at each 500 iterations. In general, it has con-
verged around 10,000 epochs. When the training of the
PhysenNet is complete, the added noise is removed from the
input hologram and the estimated amplitude and phase distri-
butions of the sample are calculated according to Eqs. (8)
and (9).

Fig. 2. Flowchart of the PhysenNet to reconstruct the in-line digital hologram. (a) Flowchart of the PhysenNet. (b) Schematic of the U-Net.
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C. Three-Dimensional Reconstruction Algorithm
of THz Diffraction Tomography
After reconstructing the transmitted wave field Ôz�0�x0, y0; θm�
of the sample at all rotation angles using PhysenNet, the weak
scattering approximation of the transmitted wave field is re-
quired. The Rytov approximation does not limit the size of the
sample [37], but only needs to satisfy that the phase change of
the sample is sufficiently small. Therefore, the Rytov approxima-
tion is carried out, and the scattered field Os�x0, y0; θm� can be
expressed as

Os�x0, y0; θm� ≈ Oin�x0, y0� ln�Ôz�0�x0, y0; θm�∕Oin�x0, y0��,
(10)

where Oin�x0, y0� is the incident plane wave. Once the Rytov
approximation of the transmitted wave fields at all rotation an-
gles is completed, the 3D reconstruction of the sample can be
performed using the diffraction tomography theory.

The adopted FBPP algorithm is employed as a spatial do-
main reconstruction algorithm of the diffraction tomography
[38], which does not require the frequency domain interpola-
tion and can effectively avoid the error-prone frequency inter-
polation in the frequency domain interpolation algorithm.
Therefore, the FBPP algorithm is widely used in diffraction
tomography for object rotation configurations. The calculation
process of the FBPP algorithm is shown in Eq. (11):

f �x0, y0, z0� �
−ik0
4π2

Z
2π

0

Z
k0

−k0

Z
k0

−k0
jkDx0

jÕs�kDx0
, kDy0 ; θm�

× exp
�
izθm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k

2
Dx0 − k

2
Dy0

q
− k0

��

× exp�i�kDx0xθm � kDyyθm��dkDx0dkDy0dθm,

(11)

where

xθm � x0 cos θm � z0 sin θm, (12)

yθm � y0, (13)

zθm � −x0 sin θm � z0 cos θm: (14)

It is seen that the FBPP algorithm can be composed of two
steps: the first step is to filter and backpropagate the 2D scat-
tering field. The second step is to stack the backpropagation
results at all rotation angles in the three dimensions to obtain
the scattering potential f of the measured sample. Finally, the
scattering potential distribution can be converted into the re-
fractive index distribution by using Eq. (15), namely

n�x0, y0, z0� � n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f �x0, y0, z0�

k20
� 1

s
, (15)

where n0 and k0 are the refractive index distribution of the
homogeneous medium around the sample and the correspond-
ing wave number.

3. EXPERIMENTAL RESULTS

A. Experimental Setup
The experimental apparatus of the in-line digital holography
was built using a continuous-wave THz source as shown in

Fig. 3. The THz source is an optical pumped far-IR gas laser
(295-FIRL-HP; Edinburgh Instruments Ltd., UK) with a cen-
tral wavelength of 118.83 μm (2.52 THz) and a maximum
power of 500 mW. First, the emitted THz beam is expanded
and collimated by two off-axis parabolic mirrors (PM1, f 1 �
50.8 mm; PM2, f 2 � 152.4 mm); the beam size becomes
two times bigger than the original one. The final spot diameter
of the illumination beam is approximately 25 mm. The ex-
panded THz beam propagates for a small distance, and then
illuminates the sample. The diffracted light modulated by the
object as object beam and the nondiffracted light as the refer-
ence beam both propagate to the recording plane along the
same optical path. Finally, the in-line holograms are recorded
by a pyroelectric detector (Pyrocam III, Ophir Spiricon). It has
320 × 320 pixels with 80 μm × 80 μm pixel pitch and 50 Hz
chopping frequency. Here, 500 frames of the holograms are
recorded and accumulated via Gaussian fitting to improve
the contrast of the digital hologram. In order to obtain the pro-
jection data of the sample under different illumination angles, a
rotational stage (PRMTZ8/M; Thorlabs Inc., USA) for rotat-
ing the sample is added to the original optical path, as shown in
the blue dashed area in Fig. 3. Thus, by rotating the sample, the
in-line digital holograms of the sample at the different rotation
angles can be achieved.

B. Digital Holographic Reconstruction under a Single
Projection Angle
To demonstrate the effectiveness of the PhysenNet, the thin
and thick samples are both tested at the rotation angle of
0°, respectively. In our experiments, the PhysenNet is compared
with other phase retrieval algorithms, including the backpropa-
gation method based on the ASP, the error reduction (ER)
method [39], the iterative denoising phase retrieval method
based on real and imaginary parts (IDPR-RI) [17], and the
complex constrained total variation regularization (CCTV)
method [40].

1. Thin Samples
First, a binary Siemens star resolution plate and a forewing of
cicada were tested as shown in Fig. 4. The Siemens star is made
by fabricating gold-film bars on a silicon substrate. At a fre-
quency of 2.52 THz, silicon has a high transmittance with a
refractive index of 3.4175. To quantitatively evaluate the ex-
perimental results reconstructed by different methods, a blind
image quality assessment model named the natural image qual-
ity evaluator (NIQE) is adopted [41]. The NIQE is a kind of

Fig. 3. Schematic of the setup of continuous-wave THz in-line dig-
ital holography. Off-axis parabolic mirrors, PM1 and PM2; rotational
stage, RS.
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the reference-free image evaluation function, so only the recov-
ered image is required as the input data, and the smaller NIQE
values represent better quality of the experimental results.
Figures 4(b) and 4(c) are the recorded hologram and the cor-
responding normalized hologram, where the recording distance
of the hologram is about 32.5 mm. Figures 4(d)–4(h) are the
amplitude distributions reconstructed by the backpropagation
method, the ER method, the IDPR-RI method, the CCTV,
and the proposed PhysenNet. It can be estimated that the
opaque parts of the Siemens star occupy about 32% of the il-
lumination area. The opaque parts of the Siemens star are
treated as the effective area of the sample, which has exceeded
the sparse requirement as stated in Ref. [42]. Therefore, the ER
method is ineffective for this sample. On the contrary, the
IDPR-RI method, the CCTV, and the PhysenNet can not only
reduce the twin image, but also relax the limitation of the sam-
ple size in the Gabor in-line digital holography to a certain ex-
tent. The IDPR-RI method treats the twin image as noise
superimposed in the object plane, and then the denoising pro-
cess embedded in each iteration is applied to the real and imagi-
nary parts of the object field, respectively. Therefore, it is also
enabled to obtain better reconstruction results. The CCTV
adopts the complex constrained total variation regularization
instead of real part total variation regularization, so that the
twin image is also suppressed. The reconstructed amplitudes
and phases by the PhysenNet have the lower NIQE values
and also have sharper edges. More obviously, the background
region reconstructed by the PhysenNet has less noise interfer-
ence, which demonstrates the advantages of the proposed
method in terms of the twin-image suppression and noise re-
duction. Similarly, from the reconstructed results of the cicada
wing in Fig. 5, it is also seen that the amplitude and phase dis-
tributions reconstructed by the PhysenNet have the best qual-
ity; it is demonstrated from its smaller NIQE value. From
Figs. 5(f1) and 5(f2), the amplitude and the phase distributions
reconstructed by the PhysenNet have better contrast between
the wing membrane and the wing veins, which implies better
image resolution. The size of the clearly observed vein is about
170 μm. It is noted that here the U-Net establishes the

mapping relation between the intensity of the hologram and
the complex amplitude distribution of the object. Only the for-
ward diffraction propagation model is used to produce esti-
mated measurements to drive the training of the CNNs so
that it automatically optimizes the weights and bias of the
U-Net to suppress the twin image better. It is mainly beneficial
from the interplay between a handcrafted network structure
and a physical diffraction propagation model.

In addition to the above-mentioned reconstruction quality,
there are two aspects to discuss below. The first aspect is the
experimental resolution, which can be revealed by using the
Siemens star sample, given by the following equation:

c � r × sin α, (16)

where r is the distance from the center of the Siemens star to
the distinguishable position, and α � 7.5°. The inset figures of
Figs. 4(f )–4(h) are the zoomed-in results of the red dashed area,
where the one-dimensional (1D) amplitude distributions at the
white solid line are shown. From Figs. 4(f )–4(h), the distances
from the white solid line to the center of the Siemens star are
calculated as rIDPR	RI ≈ 1303 μm, rCCTV ≈ 1530 μm, and
rPhysenNet ≈ 1270 μm; thus the lateral resolution of the
IDPR-RI, the CCTV, and the PhysenNet can be calculated as
cIDPR	RI ≈ 170.1 μm, cCCTV ≈ 199.7 μm, and cPhysenNet ≈
165.7 μm subsequently with Eq. (16). According to Abbe’s
diffraction limit, the theoretical resolution equals ρ �
0.5λ∕ sin θmax, where θmax is the maximum diffraction angle.
When the recording distance is d ≈ 32.5 mm, the theoretical
resolution is ρ ≈ 161.2 μm. Therefore, the experimental results
reconstructed by the PhysenNet are more in agreement with
the theoretical value.

The second aspect is that for the phase retrieval algorithms,
the time consumption of the algorithm is also a more important
factor in some applications, which are discussed below for the
different algorithms. For a fair comparison, the stopping con-
ditions of the different phase retrieval algorithms are the same;
i.e., the mean square error (MSE) between the reconstructed
amplitude of two adjacent iterations is less than 10−4.
Through several tests, the time consumption of the different

Fig. 4. Comparison of the reconstructed results of the Siemens star and the cicada wing by different algorithms. (a) Photo of the Siemens star,
(b) in-line hologram, (c) preprocessed normalized hologram, and (d)–(h) amplitude distributions by the backpropagation method, the ER method,
the IDPR-RI method, the CCTV, and the PhysenNet, respectively.
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algorithms is shown in Table 1. As illustrated from the table,
PhysenNet takes the most time. However, with the GPU accel-
eration, the PhysenNet requires only about 8 min, and the
computing speed has increased by nearly 53 times. This is
one of the drawbacks of the neural network-based computa-
tional imaging methods. The prediction time in the order of
minutes will not be enough to meet some dynamic applica-
tions. The computational time needed to be improved. It is
worthwhile to note that for the applications where almost a
real-time reconstruction is required, it is possible to make the
PhysenNet have faster reconstruction. It can be realized by
adopting the joint training process, e.g., using some of the re-
corded data for the training of the PhysenNet. Then it will
largely reduce the computational time.

2. Thick Samples
For the thicker samples, a single polystyrene (PS) foam sphere is
tested by the in-line digital holography in the experiment. The
adopted PS foam sphere is shown in Fig. 6(a) with a diameter of
about 6.58 mm and a refractive index of about 1.0169 (which
is measured using THz-TDS). Figure 6(b) is the normalized

hologram. The reconstructed amplitude and phase distribu-
tions by the backpropagation method, the ER method, the
IDPR-RI method, the CCTV, and the PhysenNet are illus-
trated in Figs. 6(c1)–6(g1) and 6(c2)–6(g2), respectively. It
can be revealed that neither the ER method nor the IDPR-
RI method can effectively reconstruct the amplitude and phase
distribution of the PS foam sphere. This is because the above
two methods use the iterative strategy of the positive absorption
constraint on the object plane, which only works for thin
samples. However, for thicker samples, the positive absorption
constraint becomes invalid, leading to the failure of the
reconstruction. In contrast, both the CCTV and PhysenNet
are gradient descent-based optimization methods. Among
them, the CCTV quantifies the error between the estimated
hologram and the actual measured hologram by a loss function,
and accordingly updates the current estimate based on the gra-
dient of the error. The PhysenNet first uses the gradient of the
error to optimize the parameters of the CNNs for the purpose
of updating the current estimate. Therefore, when the positive
absorption constraint is invalidated, the CCTV and PhysenNet
are still effective. Due to the robust fitting capability of the
CNNs, PhysenNet has improved performance. The complex
amplitude distribution reconstructed by PhysenNet has higher
quality and fidelity compared with CCTV, and the threads of
the support rod in the reconstructed amplitude are clearly dis-
tinguished, as demonstrated in Fig. 6(g1), which means higher
image resolution. In order to evaluate quantificationally, two
rectangle regions are chosen in Figs. 6(f2) and 6(g2), and
the root mean square error (RMSE) values are calculated as
0.1158 and 0.0361, respectively. This shows that the back-
ground of the results obtained by PhysenNet is more even.

Fig. 5. Comparison of the reconstructed results of the cicada wing by different algorithms. (a) Optical photo of the cicada wing; (b) normalized
hologram; (c1)–(e1) and (c2)–(e2) amplitude and phase distributions by the IDPR-RI method, the CCTV, and the PhysenNet, respectively; and (f1)
and (f2) amplitude and phase profiles of the white dashed line in (c1)–(e1) and (c2)–(e2).

Table 1. Comparison of the Runtime for Different Phase
Retrieval Algorithms

Algorithms Platform Iterations Time

ER CPU 200 ∼6 s
IDPR-RI CPU 50 ∼42 s
CCTV CPU 500 ∼68 s
PhysenNet CPU 10,000 ∼430 min
PhysenNet CPU + GPU 10,000 ∼8 min
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C. Three-Dimensional Reconstruction of the
Refractive Index Distribution
Regardless of the thin or thick samples, their amplitude and
phase distributions reconstructed by the phase retrieval algo-
rithms or the other THz QPI method are the integration of
the absorption coefficient and refractive index of the sample
in the illumination direction, respectively, which only reflect
part of the 3D structure distribution of the sample at a certain
illumination angle. To obtain the 3D information of the sam-
ple, a 3D imaging method combining the in-line digital holog-
raphy with diffraction tomography was implemented in the
THz band for the first time, to the best of our knowledge.
Its reconstruction process consists of two steps. First, using
the PhysenNet, the complex amplitude distributions of the
sample at various rotation angles were reconstructed in the
in-line digital holography; it provides the projection data for
the reconstruction of the diffraction tomography. For the tradi-
tional one-to-one training mode, i.e., one PhysenNet corre-
sponds to one digital hologram, according to the Table 1,
with GPU acceleration, 8 min is required for one digital holo-
gram. There are in total 72 digital holograms; then it will take
about 576 min. Here, a joint training procedure is proposed,
where all the recorded digital holograms are used to train a
PhysenNet, and the training time is largely reduced to 40 min.
The effectiveness of the joint training process is because its
complex amplitudes at adjacent rotation angles have partial
overlap for the same sample. Thus, by utilizing this redundancy

information, a PhysenNet can be trained rapidly without using
a large amount of training data. Then, the 3D complex refrac-
tive index distribution of the sample was obtained through the
FBPP method based on the Rytov approximation.

In the experiments, the sample was rotated gradually by
360° at angular intervals of 5°; thus 72 in-line holograms with
the object were recorded successively, followed by the illumi-
nation beam without the object. Figure 7 shows the recon-
structed refractive index distribution by the FBPP method
based on IDPR-RI, CCTV, and PhysenNet (named as DT-
IDPR-RI, DT-CCTV, and DT-PhysenNet), in which
Figs. 7(a)–7(c), 7(d)–7(f ), and 7(g)–7(i) are the refractive index
distributions at the x–z, y–z, and y–x sections. Figure 7(j) rep-
resents the 1D refractive index profiles of the corresponding
white dotted line in Figs. 7(a), 7(d), and 7(g); it reveals that
the obtained refractive index distribution by the diffraction
tomography algorithm based on the PhysenNet is very close
to the ideal value, which is measured by the THz-TDS system.
To better present the recorded holograms of all the 72 rotations
and the reconstruction process of the refractive index distribu-
tion, Visualization 1 is made, and it exhibits the reconstruction

Fig. 6. Comparison of the reconstructed results of a PS foam sphere
by different algorithms at a single projection angle. (a) Optical photo
of the sample, (b) normalized hologram, and (c1)–(g1) and (c2)–(g2)
amplitude and phase distributions by the backpropagation method,
the ER method, the IDPR-RI method, the CCTV, and the
PhysenNet, respectively.

Fig. 7. Reconstructed refractive index distribution of a single PS
foam sphere by the FBPP method. (a)–(c), (d)–(f ), and (g)–(i)
Refractive index profiles based on the DT-IDPR-RI, DT-CCTV,
and DT-PhysenNet at x–z, y–z, and y–x cross sections, respectively.
(j) Refractive index profiles of the white dotted line in (a), (d), and
(g) (Visualization 1).
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of the FBPP method dynamically. By using the different recon-
structed 3D refractive index distribution of the PS foam sphere,
a quantitative analysis is performed for the different methods.
Here, the DT-IDPR-RI has a large error with an average refrac-
tive index of 1.0025 and a relative error of 1.42%. The
reconstruction error of the DT-CCTV is also relatively large,
and has an average refractive index of 1.0109 and a relative
error of 0.59%; average value of the DT-PhysenNet is calcu-
lated to be about 1.0151. Compared with the ideal value, the
relative error of the proposed method is only 0.17%. It illus-
trates that the implementation of the THz diffraction tomog-
raphy based on in-line digital holography is successful.

Finally, two PS foam spheres that are glued together were
also tested, the larger one with a diameter of about 6.46 mm
and the smaller one with a diameter of about 5.23 mm.
Figures 8(a)–8(c) show the refractive index distributions at
the x–y and x–z (y1 � 2 mm, y2 � 3 mm) cross sections.
Due to the inhomogeneity of the illumination beam, the larger
foam sphere located in the center of the detector’s field of view
has better reconstruction quality, as shown in Figs. 8(a)–8(c).
Figure 8(d) shows the volume rendering of the 3D refractive
index distribution, and it exhibits that the refractive index dis-
tribution of the reconstructed sample has the property of stan-
dard spherical symmetry, as expected. With Fig. 8(d), the
diameters of the reconstructed two foam spheres as approxi-
mately 6.41 mm and 5.18 mm were calculated, with relative
errors of about 0.77% and 0.95%, respectively.

4. SUMMARY

In this paper, it is the first time according to our best knowledge
that the THz in-line digital holographic diffraction tomography
(THz-IDHDT) was proposed and demonstrated based on a
physics-enhanced deep neural network (PhysenNet). It in-
cludes the reconstruction of in-line digital holography and dif-
fraction tomography, respectively. First, PhysenNet enables us

to reconstruct the 2D complex amplitude distribution of the
sample with high fidelity at various rotation angles. The main
advantages of the PhysenNet are that it can be directly used
without pretraining, thus getting rid of the need for a large pre-
training set of labeled data, and it can also work well for thick
samples. And then the high-precision 3D refractive index dis-
tribution of the sample is obtained by the FBPP method, which
would contribute to facilitate the application of the THz 2D
and 3D imaging. More specifically, two main contributions are
summarized as follows.

(1) In order to detect the internal 3D structure of the sam-
ple, the THz-IDHDT with extremely compact optical path was
first proposed in the THz band based on the PhysenNet. As a
proof of principle, the 3D refractive index distribution was ob-
tained for the single sphere and two glued PS foam spheres.
Compared with the average refractive index value measured
by the THz-TDS system, its error is only 0.17%, which proves
the validity and accuracy of the THz-IDHDT. It is noted that
the proposed method can be applied to other wavebands as
well, such as visible light and X-rays.

(2) A learning-based phase retrieval algorithm combining a
physical model and a CNN has been applied and validated for
the first time, to the best of our knowledge, in the THz band,
which can solve the twin-image problem in in-line digital
holography without the pretraining and a large amount of la-
beled data. In the experiments, the thin samples and the thick
samples were tested, and the imaging results demonstrated the
feasibility of PhysenNet. It is applicable to the other THz QPI
methods in principle.
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